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Thermostatistic properties of a g-generalized Bose system trapped in an-dimensional harmonic
oscillator potential
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The thermostatistic properties ofgegeneralized boson system trapped innadimensional harmonic oscil-
lator potential are studied, based on the generalized statistic distribution derived from Tsallis’ entropy. The
density of states, total number of particles, critical temperature at which Bose-Einstein condensation occurs,
internal energy, and heat capacity at constant volume are derived. The characteristics of Bose-Einstein con-
densation of the system are discussed in detalil. It is found from the results obtained here that the thermostatistic
properties of such a system depend closely on parametitmensional number of the space, and frequency of
the harmonic oscillator; and the external potential has a great influence on the thermostatistic properties of the
system.
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[. INTRODUCTION tally demonstrated in magnetic traps of rubidi28,29,
lithium [30], and sodiun31] gases in 1995. This has caused
The g-generalized statistical mechanics proposed by Tsala sensation throughout the physics community. Many authors
lis [1] and developed by many researchf?s-14] has be- have studied the thermostatistic properties of the boson sys-
come a powerful tool to deal with some systems which ardems from both theory and experiment and a great number of
more complex than a standard ideal gas and present longhportant results have been obtained. In the research, the
range interactions and/or long-duration memory. In recengXtérnal potential plays an important role. Especially in ex-
years, it has been successfully used to study the thermostatRerimental settings, trapping potentials are well approxi-
tic properties of many physical systems such as selfmated by the potential of a harmonic oscillaf8e] and so it
gravitating stellar systenfd 5,16 with q lower thanZ, low- has been used to investigate many interesting problems of
dimensional dissipative systemi$7] with q<1, the Lay BEC_ [33-42, such as spectral equ_walence of bé)s_ons and
flight random diffusion[18,19 with $<q<3, the galaxy fermions[34], Hartree-Fock calculations of BEC ¢ti at-

) o oms[36], density of states for BEC41], etc.
model of the generallzeq Fregman dil] with ¢ =~ 1 the In past years, the-generalized statistical mechanics has
electron plasma two-dimensional turbulengks] with g

T : L been used to investigate the generalized BEC gflbmson
=3, the cosmic background radiatid21] and correlated system and some important results have been obt4itgd
themes|22], the linear response theoff3], the solar neu- 5] However, to our knowledge, these studies are mainly
trinos [24], thermalization of electron-phonon systef@$],  estricted to a fre@-boson system. Investigations have sel-
etc. A Iarge number of Significant results obtained haVQjom been done on the properties of the trappdnbsor]S,
shown that parametey can play an important role in such which may be more closely related to the sensational experi-
studies. ments of BEC in ultracold trapped Bose gag@s—31.
On the other hand, it is well known that in a many body Thus, it is significant to investigate the thermostatistic prop-
system of bosons, it is possible to have an off-diagonal longerties of the trapped-boson system.
range order(ODLRO) of the reduced density matrices in  In the present paper, the generalized Bose-Eingtif)
coordinate space representati@6]. The onset of ODLRO distribution function derived from Tsallis’ entropy will be
points at quantum phase and quantum phase transitions inused to study the thermostatistic properties gfl@oson sys-
many body system. The well-known example for a manytem trapped in am-dimensional harmonic oscillator poten-
body bosonic system is Bose-Einstein condensatBC)  tial. The paper is organized as follows. In Sec. Il, the total
[27], which was predicted by Bose and Einstein more thamumber of particles and critical temperature ofjdoson
70 years ago. Owing to the development of techniques tgystem are derived analytically. The characteristics of the
trap and cool atoms, BEC of the Bose gas was experimereritical temperature are analyzed in detail and the conditions
under which BEC may occur are determined. In Sec. Ill, the
total energy and heat capacity of the system are calculated.
* Author to whom all correspondence should be addressed. MailThe characteristics of the heat capacity for different tempera-
ing address: Department of Physics, Xiamen University, Xia-ture regions are discussed. Some important results are ob-
men 361005, People’s Republic of China. Email addresstained. In Sec. IV, the properties of an ordinary boson system
jcchen@xmu.edu.cn trapped in am-dimensional harmonic oscillator potential are
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directly deduced. Finally, some important conclusions are

summed up. S(e)= % H (dr,dp))
H=<ei=1
Il. TOTAL NUMBER OF PARTICLES AND CRITICAL _ gm" I'(n/s+1) N
TEMPERATURE " (ho) T(n/2+1)a™(m/i2)™ T(rA+1) ©
It is well known that theg-generalized statistics charac- (5)
terized by a parameteyrely on the so-called Tsallis’ entropy
[1] where
1-3W pd A=n/s+n/2. (6)
Sak—g1 @

The derivative of Eq(5) with respect tce yields the expres-
sion of the density of states for an ideal system trapped in an

whereqe R, kis the Boltzmann constarp; is the probabil- n-dimensional harmonic oscillator potential, i.e.,

ity of a particle at thath state, andV is the total number of

states of the system. Within the approximation method called ga" I'(n/s+1)
factorization approach, the generalized BE distribution can D(g)= 7 )

be written in an important formalisi®6—48: (ho)"T'(n/2+ 1)a™(m/2)" I'(h)

&€
)

ng= ! 2) andg is the degree of degeneracy. By using Ef}, the total
1+ (q-1)B(e—p) MV -1 number of particles of the system can be written as

wheren, is the average occupation number at a state with w2

g
energy.e, B=1/(kT), Tis the absolute temperature, ands N:N0+J ngD(e)de = v (m/z)rﬂ?gq Zq), (8)
the chemical potential. Wheq=1, Eq. (2) becomes the
well-known BE distribution. whereN, is the number of particles in the ground state (

_ Now Iet_us co_nsider q—gene_ralized_Bose system trapped _ 0), Zg=[1+(1— q)Br]Y-9 s called the generalized
in an n-dimensional harmonic oscillator potential. The ¢ ugacity [45), xo=[T'(n/2+1)/T(n/s

Hamiltonian of a single particle in the system can be wrltten+ 1)]1¥a(hw)s 752]YgNn s called the generalized ther-
as mal wavelengti50] which is independent o, and

2 T(i(1-q)+1)

=g TGii-g+r+n 4=V

1 o -
H=ap*+ 3m2, [or % 3 P

g (Zg)= o

wherea and s are two positive constants to describe the . D 27 TN (/(g-1)—\) (q>1)

kinetic energy of the system. For exampées 1/(2m), s = (g—-1)* T(/(g—1))

=2, anda=c, s=1 correspond to the nonrelativistic and 9

ultrarelativistic cases, respectivetyjs the speed of lightn

is the particle mass, and, is the frequency of harmonic is called theg-generalized Bose integral. In order to guaran-

oscillators. tee theg-generalized Bose integral to be larger than zero,
For ann-dimensional harmonic oscillator potential with <(\+1)/\ must be satisfied. It can be seen from ).

spherical symmetric, the Hamiltonian of a single particle inthatg, ,(z,) is @ monotonically increasing function of and

the system may be simplified as the maximum value of, is equal to 1 when=0.
When temperature is not lower than the critical tempera-
H=ap%+ 3 mw?|r|2. (4)  ture of BEC, most of the particles in the system are at the

excited states and the number of particles in the ground state
It is worthwhile to point out that such a consideration does'S macroscopically negligible, so we obtain
not lose generality. In fact, it can be proven easily that if one
is interested in recovering the case®f* o, itis sufficient
to replaceo” with TI_, w; in the following equations.

g 77_n/2 g 77_n/2
N~N¢= X qu AZg) = qu()\)

When the number of particles in the system is large and (10
the potential energy of particles in a trap is much smaller
than their kinetic energgthis condition is often satisfiedthe ~ where Xsc=[I'(n/2+1)/I"(n/s

Thomas-Fermi semiclassical approximation is valtB].  +1)]Y"[a(hw)® 7¥2]¥S(1kT,)"'" is the generalized ther-
Thus, the sums over quantum states may be replaced by imal wavelength at the cr|t|caI temperatuiig . of BEC,
tegrals over phase space. The total number of quantum statediich can be defined as the same as an ordinary boson sys-
for H=e may be expressed as tem whereq=1 and is given by
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_ 1[N (m2)"a"(hw)" I'(n2+1) 1 |

= 35 B A=15
9 k|g " F(n/s+1) £((N)] ® =20
11) 3.0 A =30
v A=45
and b: 25
E . . J q (q<1) ~
=1 (1-q)" T'(/(1=q)+A+1) 15
R N et
-1)- Lo B AL
>  —— (a>1)
= @D T(/(a-1) o)
(12 ‘ .
is the generalized Riemann zeta function. O'Oo_o 05 0 15
Whenqg=1, Eq.(12) reduces to the Riemann zeta func-
tion &), i.e., q
: _ FIG. 1. The curves of the critical temperature varying with pa-
(Llinl &(M=EM) (3 rameterq for some different values of.
and Eqg.(11) can be simplified as parameter\ is proportional to the dimensional number of

space, so that the larger the dimensional number of space of
_T a g-boson system is, the more easily the BEC ajf-boson
- e system will occur. The results obtained here will be helpful
(14) in searching somey-boson systems which have a higher
critical temperature of BEC. Wheqp> 1, the results are just
which is just the critical temperature of an ordinary bosonthe contrary. In addition, from the fact th#, ./ T, decreases
system trapped in an-dimensional harmonic oscillator po- with the increase of it can be estimated that the correlation
tential. Whenn=3 ands=2, important results obtained in petween the particles is repulsive fpr-1 and attractive for
Refs. [51,52, T.=(hw/2mk)[N/£(3)]'" can be directly q<1. This important conclusion is the same as that obtained

_ 1[N (m2)"a"(hw)" T'(n/2+1) 1 ™
Le7klg " T(n/s+1) &N)

derived from Eq.(14). in Ref. [44].
By using Eq.(14), Eq. (11) can be expressed as a simple WhenT<T, . one part of the particles condenses in the
eaen ground state. From Eq¢8) and (10), one can obtain the
Toe [ €N 0\ 15 particle number at the excited states,
To &) N
Ne: N s (16)
Tqc

This result is similar to that in Ref45], but the parameters
related to the external potential are included in parameter
It has been proved45] that £,(\) is convergent whem
>1. This implies the fact that if and only X>1, BEC of a No
g-boson system trapped in a harmonic oscillator potential N
can occur. It can be clearly seen from HE6) that within a

harmonic oscillator potential trap, BEC ofggboson system a6 resylts are similar to those of an ordinary boson sys-

can occur more easilly than that ofytboson system withogt_ tem, but the critical temperatures for thggboson and ordi-
any external potential. For example, for the nonrelatlwtynary boson systems are different.

case 6=2), only when the dimension of space is larger than
2 can BEC of a freg-boson system occur. However, with
the help of a harmonic oscillator potential trap, BEC of a

d-boson system witm=2 can occur. We now continue to derive the total energy of the system.

Using Eg.(15), we can plot the curves of, /T, with By using Eq.(5), the total energy of the system is given by
respect to parametay, as shown in Fig. 1. It can be seen
from Fig. 1 thatT, ./T. decreases with the increase af
This means that the smaller the parameieis, the more E:f ngeD(e)de
easily the BEC of a system can occur. Whea 1, £4(\) .
<&(N), Tqe>Te, and T, /T, increases with the increase _ gm I'(n/s+1)
of \. This implies the fact that BEC of g@boson system will (hw)"T(n/2+1)a"S(m/i2)"  T'(\)
occur more easily than that of an ordinary boson system and \
the larger the parametey, the more easily the BEC of a e'de

X
g-boson system will occur. It is clearly seen from Eg). that f [1+(g—1)B(e—pw)]MaD -1

and the fraction of condensation in the ground state,

T A
Tq,c) ' 12

I1l. INTERNAL ENERGY AND HEAT CAPACITY
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gr'I'(n/s+1) N (i) In the region ofT<T, ., the heat capacity at constant
= (hw)"T(n/2+ 1)a"s(m/2)"2 gr 71 Jan+1(Zg)- volume C, is a r_non_otpmcally increasing functm_n of tem-
perature, which is similar to the case of an ordinary boson
(18 system.

(ii) In the region ofT>T, ., the heat capacity at constant
volume C,, is very different from the case of an ordinary
a.c boson system. Wheg<1, the heat capacity at constant vol-

T \A £(N+1) umeC, is a monotonically decreasing function of tempera-
) — (190  ture. Wheng>1, the heat capacity at constant volu@gis
T £q(M) not a monotonic function of temperature. It first decreases
and then increases with, so there is a minimal value for
e C,. This result has been observed experimentéi].
Igr+1(Zg) WhenT>T, ., the heat cap_acity at constant yolurﬁg of _
W' (200 theg-boson system trapped in a harmonic oscillator potential
a1t is not equal to /s)k and is still dependent on parametars

Substituting Eqs(19) and (20) into the expression of the andq, while the heat capacity at constant volu@g of an
heat capacity at constant volume ordinary boson system is always equal tég)k. This shows

once again thaf is an important parameter which describes

Comparing Eqs(18) and (8), one can easily find that when
T=T

E= )\kTN(
a.c

whenT>T

E=NKTN

JE implicitly the interaction of the particles in the system. When
o T 3T ; (21) g#1, the correlation between the particles in the system
NV must be considered even at high temperatures.
one can find that the heat capacity at constant volume is (V) WhenT=Tqc, we obtain
given by ACy , &q(N)
—_— =N (24
JE(T<Tqo) Nk |1 _; Eq(A—1)
CoT=Tgo)=| ——= ac
NV from Egs.(22) and (23). Equation(24) shows clearly that
T \* Eq(N+1) when A <2, the heat capacity at the critical temperature is
=MA+1)k N(T—> TSI (22)  continuous; when > 2, the heat capacity at the critical tem-
a.c a perature is discontinuous and the jump at the critical tem-
whenT<T,; perature is dependent on parametendg. This point can
' be clearly seen from Fig. 2.
IE(T>Tg)
Co(T>Tqe) = T) - IV. A SPECIAL CASE
g (22) Whenqg=1, as expected, one can directly derive the ther-
=NA+1) Nk=aA*1 a7 modynamic properties of an ordinary boson system trapped
g, (Zg) in an n-dimensional harmonic oscillator potential. For ex-
Gar(Zo) ample, from Eqs(16), (17), and(19)—(21), one can obtain
SNk (23)  the ground state fraction
gq,)\—l(zq)
: o No T\"
Wh;anT>Tq,C (a detailed derivation is given in the Appen- Wzl_(T_) , (25
dix). ¢
It is seen from Eqs(22) and(23) that the heat ca_pacity at the internal energy
constant volume of the-boson system trapped in a har-
monic oscillator potential is dependent not only on the tem- T\ é,41(2)
perature but also on parametersand g. For given param- AktN(T—) £(2) (T<To)
eters\ andg, one can generate the curves®)fvarying with E= ¢ » (26)
T/T¢q. as shown in Fig. 2. It is important to note that some )\ktNng(Z) (T>Ty)
important results can be deduced from the curves in Fig. 2. 0\(2) o

(i) The heat capacity at constant volun@®, of the o heat capacity at constant volume
g-boson system trapped in a harmonic oscillator potential at

all temperatures increases with the increase of parameters T\Mé 1 1(2)
and g. It shows thatC, of a g-boson system fog<1 is M+ 1KN| £(2) (T<To)
smaller than that of an ordinary boson system at all tempera- C,= ( )C » @
tures, because the correlation between the particles in such a Or+1(2 2 O\ (Z

! ) ) O T>T,),
g-boson system is attractive. Whgir 1, the result is just the MA+DKN 0,(2) MKN Or-1(2) ( )
contrary. (27)

026123-4



THERMOSTATISTIC PROPERTIES OF 4-. .. PHYSICAL REVIEW E 68, 026123 (2003

5 - 40] = =09
m g=09 °
® ¢g=10 A
A g=11 v
4 v g=1.15
34 {
X
<
o \
O 2 |
!
1 |
|
1
1
0 + 4.0
00 05 10 15 20 25 30 35 40
T
q,c
(a)
1000
| g=09 100 4
® ¢g=1.0
A g=11 =
v g=115] < 10
O
14
m g=09
® =10
0.1 A g=1.1
v q=1.15
L r 4 T T T T 0.01 + T Y T r r T T r
00 05 10 15 20 25 30 35 4.0 00 05 10 15 20 25 30 35 40
T T
q.c q.c
(b) (d)

FIG. 2. The curves of the heat capacity varying withT, . for some different values af. (&) A=1.5, (b) A\=2, (c) A=3, and(d) A
=4.5.

and the jump at the critical temperature energy, heat capacity at constant volume, the jump of the
heat capacity at the critical temperature, and so on.
[Acv o, &N 29 It is significant to find the following important conclu-
Nk — EN—1)" sions from the analytic expressions obtained in this paper.

(i) The thermostatistic properties ofjegeneralized boson
where gn(Z):Elllzj/J'n is the Bose integra[53]. If one  system trapped in an-dimensional harmonic oscillator po-
does not consider any external potential, the results in Refential are closely dependent not only on parameteahd

[54] can be derived from the above results. n/s but also on the external potential.
(ii) Only when\>1 can BEC of ag-generalized boson

system occur.
(iii) The smaller the parametey the higher the critical
With the help of theg-generalized BE distribution func- temperature of BEC for g-generalized boson system.
tion and the density of states of an ideal Bose system trapped (iv) When 1<\ =<2, the heat capacity at the critical tem-
in an n-dimensional harmonic oscillator potential, we haveperature of BEC is continuous; while for<2\, the heat
successfully derived the analytic expressions for the thermoecapacity at the critical temperature of BEC is discontinuous
dynamic parameters ofggeneralized boson system trapped and there is a jump, which is dependent on paraméatersd
in an n-dimensional harmonic oscillator potential by intro- g.
ducing some significant physical parameters such as the gen- (v) In the region ofT>T, ., the heat capacity at constant
eralized Bose integral, generalized Riemann zeta functionjolume of ag-generalized boson system+ 1) is not equal
generalized wavelength, and so on. The important parante (n/s)k. This is very different from the case of an ordinary
eters include the total number of particles, critical temperaboson systemq=1).
ture, fraction of condensation in the ground state, internal The results obtained here are very general. They are

V. CONCLUSIONS
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suitable not only for ag-generalized boson but also for an Iggr(zg) 1
ordinary boson system trapped in any-dimensional harmonic T ng,}\fl(zq)- (A2)
oscillator potential. 9 q
ACKNOWLEDGMENT Solving Egs.(Al) and(A2) gives
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Similarly, one can obtain
APPENDIX
. . 1 0z
Using the relation {N/dT),,=0 and Eq.(10), one can ﬁgq,)\Jrl(Zq)/U-'T:?gq,)\(zq)&_-l?
obtain J
_ agq,)\(zq) ﬁZq _ A ——\ gq,x(zq) gq,)\(zq) . Ad
3Gg\(2g)/ 9T = oz, aT T9(2Z0)- (AD) T ggr-1(zg) (Ad)
From Eq.(9), we can derive Using Eqgs.(20) and(21), one can derive
|
JE(T>T z d z)loT Zy)—[d z)/dT z
CU(T>Tq C):( ( q,c)) :)\ngq,}\Jrl( q)+)\NkT[ gq,)\+1( q) ]gq,)\( q) [ gg}\( q) ]gq,)\+1( q).
Y aT N.V gq,)\(zq) [gq,x(zq)]

Substituting Eqs(A3) and (A4) into Eq. (A5) yields Eq.(23).
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