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Thermostatistic properties of a q-generalized Bose system trapped in ann-dimensional harmonic
oscillator potential
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The thermostatistic properties of aq-generalized boson system trapped in ann-dimensional harmonic oscil-
lator potential are studied, based on the generalized statistic distribution derived from Tsallis’ entropy. The
density of states, total number of particles, critical temperature at which Bose-Einstein condensation occurs,
internal energy, and heat capacity at constant volume are derived. The characteristics of Bose-Einstein con-
densation of the system are discussed in detail. It is found from the results obtained here that the thermostatistic
properties of such a system depend closely on parameterq, dimensional number of the space, and frequency of
the harmonic oscillator; and the external potential has a great influence on the thermostatistic properties of the
system.
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I. INTRODUCTION

Theq-generalized statistical mechanics proposed by T
lis @1# and developed by many researchers@2–14# has be-
come a powerful tool to deal with some systems which
more complex than a standard ideal gas and present l
range interactions and/or long-duration memory. In rec
years, it has been successfully used to study the thermos
tic properties of many physical systems such as s
gravitating stellar systems@15,16# with q lower than7

9, low-
dimensional dissipative systems@17# with q,1, the Lévy
flight random diffusion@18,19# with 5

3 ,q,3, the galaxy
model of the generalized Freeman disk@20# with q521, the
electron plasma two-dimensional turbulence@15# with q
5 1

2 , the cosmic background radiation@21# and correlated
themes@22#, the linear response theory@23#, the solar neu-
trinos @24#, thermalization of electron-phonon systems@25#,
etc. A large number of significant results obtained ha
shown that parameterq can play an important role in suc
studies.

On the other hand, it is well known that in a many bo
system of bosons, it is possible to have an off-diagonal lo
range order~ODLRO! of the reduced density matrices
coordinate space representation@26#. The onset of ODLRO
points at quantum phase and quantum phase transitions
many body system. The well-known example for a ma
body bosonic system is Bose-Einstein condensation~BEC!
@27#, which was predicted by Bose and Einstein more th
70 years ago. Owing to the development of techniques
trap and cool atoms, BEC of the Bose gas was experim
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tally demonstrated in magnetic traps of rubidium@28,29#,
lithium @30#, and sodium@31# gases in 1995. This has cause
a sensation throughout the physics community. Many auth
have studied the thermostatistic properties of the boson
tems from both theory and experiment and a great numbe
important results have been obtained. In the research,
external potential plays an important role. Especially in e
perimental settings, trapping potentials are well appro
mated by the potential of a harmonic oscillator@32# and so it
has been used to investigate many interesting problem
BEC @33–42#, such as spectral equivalence of bosons a
fermions @34#, Hartree-Fock calculations of BEC of7Li at-
oms @36#, density of states for BEC@41#, etc.

In past years, theq-generalized statistical mechanics h
been used to investigate the generalized BEC of aq-boson
system and some important results have been obtained@43–
45#. However, to our knowledge, these studies are mai
restricted to a freeq-boson system. Investigations have s
dom been done on the properties of the trappedq bosons,
which may be more closely related to the sensational exp
ments of BEC in ultracold trapped Bose gases@28–31#.
Thus, it is significant to investigate the thermostatistic pro
erties of the trappedq-boson system.

In the present paper, the generalized Bose-Einstein~BE!
distribution function derived from Tsallis’ entropy will be
used to study the thermostatistic properties of aq-boson sys-
tem trapped in ann-dimensional harmonic oscillator poten
tial. The paper is organized as follows. In Sec. II, the to
number of particles and critical temperature of aq-boson
system are derived analytically. The characteristics of
critical temperature are analyzed in detail and the conditi
under which BEC may occur are determined. In Sec. III,
total energy and heat capacity of the system are calcula
The characteristics of the heat capacity for different tempe
ture regions are discussed. Some important results are
tained. In Sec. IV, the properties of an ordinary boson sys
trapped in ann-dimensional harmonic oscillator potential a

il-
-
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directly deduced. Finally, some important conclusions
summed up.

II. TOTAL NUMBER OF PARTICLES AND CRITICAL
TEMPERATURE

It is well known that theq-generalized statistics chara
terized by a parameterq rely on the so-called Tsallis’ entrop
@1#

Sq5k
12( i 51

W pi
q

q21
, ~1!

whereqPR, k is the Boltzmann constant,pi is the probabil-
ity of a particle at thei th state, andW is the total number of
states of the system. Within the approximation method ca
factorization approach, the generalized BE distribution c
be written in an important formalism@46–48#:

nq5
1

@11~q21!b~«2m!#1/~q21!21
, ~2!

wherenq is the average occupation number at a state w
energy,«, b51/(kT), T is the absolute temperature, andm is
the chemical potential. Whenq51, Eq. ~2! becomes the
well-known BE distribution.

Now let us consider aq-generalized Bose system trapp
in an n-dimensional harmonic oscillator potential. Th
Hamiltonian of a single particle in the system can be writ
as

H5aps1
1

2
m(

i 51

n

uv i r i u2, ~3!

where a and s are two positive constants to describe t
kinetic energy of the system. For example,a51/(2m), s
52, anda5c, s51 correspond to the nonrelativistic an
ultrarelativistic cases, respectively,c is the speed of light,m
is the particle mass, andv i is the frequency of harmonic
oscillators.

For an n-dimensional harmonic oscillator potential wit
spherical symmetric, the Hamiltonian of a single particle
the system may be simplified as

H5aps1 1
2 mv2ur u2. ~4!

It is worthwhile to point out that such a consideration do
not lose generality. In fact, it can be proven easily that if o
is interested in recovering the case ofv iÞv j , it is sufficient
to replacevn with ) i 51

n v i in the following equations.
When the number of particles in the system is large a

the potential energy of particles in a trap is much sma
than their kinetic energy~this condition is often satisfied!, the
Thomas-Fermi semiclassical approximation is valid@49#.
Thus, the sums over quantum states may be replaced b
tegrals over phase space. The total number of quantum s
for H<« may be expressed as
02612
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S~«!5
g

hn E
H<«

)
i 51

n

~dridpi !

5
gpn

~hv!nG~n/211!an/s~m/2!n/2

G~n/s11!

G~l11!
«l,

~5!

where

l5n/s1n/2. ~6!

The derivative of Eq.~5! with respect to« yields the expres-
sion of the density of states for an ideal system trapped in
n-dimensional harmonic oscillator potential, i.e.,

D~«!5
gpn

~hv!nG~n/211!an/s~m/2!n/2

G~n/s11!

G~l!
«l21

~7!

andg is the degree of degeneracy. By using Eq.~7!, the total
number of particles of the system can be written as

N5N01E nqD~«!d«5N01
g

xs
n

pn/2

~m/2!n/2 gq,l~zq!, ~8!

whereN0 is the number of particles in the ground state«
50), zq5@11(12q)bm#1/(12q) is called the generalized
fugacity @45#, xs5@G(n/211)/G(n/s
11)#1/n@a(hv)s/ps/2#1/sbl/n is called the generalized ther
mal wavelength@50# which is independent ofq, and

gq,l~zq!55 (
j 51

` zq
j 1~12q!l

~12q!l

G„j /~12q!11…

G„j /~12q!1l11…
~q,1!

(
j 51

` zq
j 2~12q!l

~q21!l

G„j /~q21!2l…

G„j /~q21!…
~q.1!

~9!

is called theq-generalized Bose integral. In order to guara
tee theq-generalized Bose integral to be larger than zeroq
,(l11)/l must be satisfied. It can be seen from Eq.~9!
thatgq,l(zq) is a monotonically increasing function ofzq and
the maximum value ofzq is equal to 1 whenm50.

When temperature is not lower than the critical tempe
ture of BEC, most of the particles in the system are at
excited states and the number of particles in the ground s
is macroscopically negligible, so we obtain

N'Ne5
g

xs
n

pn/2

~m/2!n/2 gq,l~zq!5
g

xs,c
n

pn/2

~m/2!n/2 jq~l!,

~10!

where xs,c5@G(n/211)/G(n/s
11)#1/n@a(hv)s/ps/2#1/s(1/kTq,c)

l/n is the generalized ther
mal wavelength at the critical temperatureTq,c of BEC,
which can be defined as the same as an ordinary boson
tem whereq51 and is given by
3-2
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Tq,c5
1

k FN

g

~m/2!n/2an/s~hv!n

pn

G~n/211!

G~n/s11!

1

jq~l!G
1/l

,

~11!

and

jq~l!55 (
j 51

`
1

~12q!l

G„j /~12q!11…

G„j /~12q!1l11…
~q,1!

(
j 51

`
1

~q21!l

G„j /~q21!2l…

G„j /~q21!…
~q.1!

~12!

is the generalized Riemann zeta function.
When q51, Eq. ~12! reduces to the Riemann zeta fun

tion j~l!, i.e.,

lim
q→1

jq~l!5j~l! ~13!

and Eq.~11! can be simplified as

T1,c5
1

k FN

g

~m/2!n/2an/s~hv!n

pn

G~n/211!

G~n/s11!

1

j~l!G
1/l

[Tc ,

~14!

which is just the critical temperature of an ordinary bos
system trapped in ann-dimensional harmonic oscillator po
tential. Whenn53 ands52, important results obtained i
Refs. @51,52#, Tc5(hv/2pk)@N/j(3)#1/3, can be directly
derived from Eq.~14!.

By using Eq.~14!, Eq. ~11! can be expressed as a simp
relation:

Tq,c

Tc
5F j~l!

jq~l!G
1/l

. ~15!

This result is similar to that in Ref.@45#, but the parameters
related to the external potential are included in parametel.
It has been proved@45# that jq(l) is convergent whenl
.1. This implies the fact that if and only ifl.1, BEC of a
q-boson system trapped in a harmonic oscillator poten
can occur. It can be clearly seen from Eq.~6! that within a
harmonic oscillator potential trap, BEC of aq-boson system
can occur more easily than that of aq-boson system withou
any external potential. For example, for the nonrelativ
case (s52), only when the dimension of space is larger th
2 can BEC of a freeq-boson system occur. However, wit
the help of a harmonic oscillator potential trap, BEC of
q-boson system withn52 can occur.

Using Eq.~15!, we can plot the curves ofTq,c /Tc with
respect to parameterq, as shown in Fig. 1. It can be see
from Fig. 1 thatTq,c /Tc decreases with the increase ofq.
This means that the smaller the parameterq is, the more
easily the BEC of a system can occur. Whenq,1, jq(l)
,j(l), Tq,c.Tc , and Tq,c /Tc increases with the increas
of l. This implies the fact that BEC of aq-boson system will
occur more easily than that of an ordinary boson system
the larger the parameterl, the more easily the BEC of a
q-boson system will occur. It is clearly seen from Eq.~6! that
02612
l

n

d

parameterl is proportional to the dimensional number
space, so that the larger the dimensional number of spac
a q-boson system is, the more easily the BEC of aq-boson
system will occur. The results obtained here will be help
in searching someq-boson systems which have a high
critical temperature of BEC. Whenq.1, the results are jus
the contrary. In addition, from the fact thatTq,c /Tc decreases
with the increase ofq, it can be estimated that the correlatio
between the particles is repulsive forq.1 and attractive for
q,1. This important conclusion is the same as that obtai
in Ref. @44#.

WhenT,Tq,c , one part of the particles condenses in t
ground state. From Eqs.~8! and ~10!, one can obtain the
particle number at the excited states,

Ne5NS T

Tq,c
D l

, ~16!

and the fraction of condensation in the ground state,

N0

N
512S T

Tq,c
D l

. ~17!

These results are similar to those of an ordinary boson
tem, but the critical temperatures for theq-boson and ordi-
nary boson systems are different.

III. INTERNAL ENERGY AND HEAT CAPACITY

We now continue to derive the total energy of the syste
By using Eq.~5!, the total energy of the system is given b

E5E nq«D~«!d«

5
gpn

~hv!nG~n/211!an/s~m/2!n/2

G~n/s11!

G~l!

3E «ld«

@11~q21!b~«2m!#1/~q-1!21

FIG. 1. The curves of the critical temperature varying with p
rameterq for some different values ofl.
3-3
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5
gpnG~n/s11!

~hv!nG~n/211!an/s~m/2!n/2

l

bl11 gq,l11~zq!.

~18!

Comparing Eqs.~18! and ~8!, one can easily find that whe
T<Tq,c ,

E5lkTNS T

Tq,c
D l jq~l11!

jq~l!
; ~19!

whenT.Tq,c ,

E5lkTN
gq,l11~zq!

gq,l~zq!
. ~20!

Substituting Eqs.~19! and ~20! into the expression of the
heat capacity at constant volume

Cv5F]E

]TG
N,V

, ~21!

one can find that the heat capacity at constant volum
given by

Cv~T<Tq,c!5S ]E~T<Tq,c!

]T D
N,V

5l~l11!k NS T

Tq,c
D l jq~l11!

jq~l!
, ~22!

whenT<Tq,c ;

Cv~T.Tq,c!5S ]E~T.Tq,c!

]T D
N,V

5l~l11! Nk
gq,l11~zq!

gq,l~zq!

2l2Nk
gq,l~zq!

gq,l21~zq!
, ~23!

when T.Tq,c ~a detailed derivation is given in the Appen
dix!.

It is seen from Eqs.~22! and~23! that the heat capacity a
constant volume of theq-boson system trapped in a ha
monic oscillator potential is dependent not only on the te
perature but also on parametersl and q. For given param-
etersl andq, one can generate the curves ofCv varying with
T/Tc,q , as shown in Fig. 2. It is important to note that som
important results can be deduced from the curves in Fig

~i! The heat capacity at constant volumeCv of the
q-boson system trapped in a harmonic oscillator potentia
all temperatures increases with the increase of parametel
and q. It shows thatCv of a q-boson system forq,1 is
smaller than that of an ordinary boson system at all temp
tures, because the correlation between the particles in su
q-boson system is attractive. Whenq.1, the result is just the
contrary.
02612
is

-
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at
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~ii ! In the region ofT,Tq,c , the heat capacity at constan
volume Cv is a monotonically increasing function of tem
perature, which is similar to the case of an ordinary bos
system.

~iii ! In the region ofT.Tq,c , the heat capacity at constan
volume Cv is very different from the case of an ordinar
boson system. Whenq,1, the heat capacity at constant vo
umeCv is a monotonically decreasing function of temper
ture. Whenq.1, the heat capacity at constant volumeCv is
not a monotonic function of temperature. It first decrea
and then increases withT, so there is a minimal value fo
Cv . This result has been observed experimentally@44#.
When T@Tq,c , the heat capacity at constant volumeCv of
theq-boson system trapped in a harmonic oscillator poten
is not equal to (n/s)k and is still dependent on parametersl
andq, while the heat capacity at constant volumeCv of an
ordinary boson system is always equal to (n/s)k. This shows
once again thatq is an important parameter which describ
implicitly the interaction of the particles in the system. Wh
qÞ1, the correlation between the particles in the syst
must be considered even at high temperatures.

~iv! WhenT5Tq,c , we obtain

FDCV

Nk G
T5Tq,c

5l2
jq~l!

jq~l21!
~24!

from Eqs. ~22! and ~23!. Equation~24! shows clearly that
when l<2, the heat capacity at the critical temperature
continuous; whenl.2, the heat capacity at the critical tem
perature is discontinuous and the jump at the critical te
perature is dependent on parametersl andq. This point can
be clearly seen from Fig. 2.

IV. A SPECIAL CASE

Whenq51, as expected, one can directly derive the th
modynamic properties of an ordinary boson system trap
in an n-dimensional harmonic oscillator potential. For e
ample, from Eqs.~16!, ~17!, and ~19!–~21!, one can obtain
the ground state fraction

N0

N
512S T

Tc
D n

, ~25!

the internal energy

E5H lktNS T

Tc
D l jl11~z!

jl~z!
~T<Tc!

lktN
gl11~z!

gl~z!
~T.Tc!,

~26!

the heat capacity at constant volume

Cv5H l~l11!kNS T

Tc
D l jl11~z!

jl~z!
~T<Tc!

l~l11!kN
gl11~z!

gl~z!
2l2kN

gl~z!

gl21~z!
~T.Tc!,

~27!
3-4
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FIG. 2. The curves of the heat capacity varying withT/Tq,c for some different values ofq. ~a! l51.5, ~b! l52, ~c! l53, and~d! l
54.5.
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and the jump at the critical temperature

FDCv

Nk G
T5Tq,c

5l2
j~l!

j~l21!
, ~28!

where gn(z)5( j 51
` zj / j n is the Bose integral@53#. If one

does not consider any external potential, the results in R
@54# can be derived from the above results.

V. CONCLUSIONS

With the help of theq-generalized BE distribution func
tion and the density of states of an ideal Bose system trap
in an n-dimensional harmonic oscillator potential, we ha
successfully derived the analytic expressions for the ther
dynamic parameters of aq-generalized boson system trapp
in an n-dimensional harmonic oscillator potential by intr
ducing some significant physical parameters such as the
eralized Bose integral, generalized Riemann zeta funct
generalized wavelength, and so on. The important par
eters include the total number of particles, critical tempe
ture, fraction of condensation in the ground state, inter
02612
f.

ed

o-

n-
n,
-

-
l

energy, heat capacity at constant volume, the jump of
heat capacity at the critical temperature, and so on.

It is significant to find the following important conclu
sions from the analytic expressions obtained in this pape

~i! The thermostatistic properties of aq-generalized boson
system trapped in ann-dimensional harmonic oscillator po
tential are closely dependent not only on parametersq and
n/s but also on the external potential.

~ii ! Only whenl.1 can BEC of aq-generalized boson
system occur.

~iii ! The smaller the parameterq, the higher the critical
temperature of BEC for aq-generalized boson system.

~iv! When 1,l<2, the heat capacity at the critical tem
perature of BEC is continuous; while for 2,l, the heat
capacity at the critical temperature of BEC is discontinuo
and there is a jump, which is dependent on parametersl and
q.

~v! In the region ofT@Tq,c , the heat capacity at constan
volume of aq-generalized boson system (qÞ1) is not equal
to (n/s)k. This is very different from the case of an ordina
boson system (q51).

The results obtained here are very general. They
3-5
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suitable not only for aq-generalized boson but also for a
ordinary boson system trapped in any-dimensional harmo
oscillator potential.
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APPENDIX

Using the relation (]N/]T)V50 and Eq.~10!, one can
obtain

]gq,l~zq!/]T5
]gq,l~zq!

]zq

]zq

]T
52

l

T
gq,l~zq!. ~A1!

From Eq.~9!, we can derive
. E

t.

s.

02612
ic

e

]gq,l~zq!

]zq
5

1

zq
q gq,l21~zq!. ~A2!

Solving Eqs.~A1! and ~A2! gives

]zq

]T
52zq

q l

T

gq,l~zq!

gq,l21~zq!
. ~A3!

Similarly, one can obtain

]gq,l11~zq!/]T5
1

zq
q gq,l~zq!

]zq

]T

52l
gq,l~zq!

T

gq,l~zq!

gq,l21~zq!
. ~A4!

Using Eqs.~20! and ~21!, one can derive
Cv~T.Tq,c!5S ]E~T.Tq,c!

]T D
N,V

5lNk
gq,l11~zq!

gq,l~zq!
1lNkT

@]gq,l11~zq!/]T#gq,l~zq!2@]gq,l~zq!/]T#gq,l11~zq!

@gq,l~zq!#2 .

~A5!

Substituting Eqs.~A3! and ~A4! into Eq. ~A5! yields Eq.~23!.
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